ADVANCES IN INFORMATION SECURITY

Malware
Detection

Edited by
Mihai Christodorescu
Somesh Jha
Douglas Maughan
Dawn Song
Cliff Wang

@ Springer

Malware Detection

Advances in Information Security

Sushil Jajodia
Consulting Editor
Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia @ gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:

ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit
Bleumer; ISBN: 978-0-387-29313-2

MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS by Jintai Ding, Jason E. Gower
and Dieter Schmidt; ISBN-13; 978-0-378-32229-2

UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by
Stefan Axelsson; ISBN-10: 0-387-27634-3

QUALITY OF PROTECTION: Security Measurements and Metrics by Dieter Gollmann,
Fabio Massacci and Artsiom Yautsiukhin; ISBN-10: 0-387-29016-8

COMPUTER VIRUSES AND MALWARE by John Aycock; ISBN-10: 0-387-30236-0
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G. Gouda;
ISBN-10: 0-387-22426-3

CRYPTOGRAPHICS: Exploiting Graphics Cards For Security by Debra Cook and
Angelos Keromytis; ISBN: 0-387-34189-7

PRIVACY PRESERVING DATA MINING by Jaideep Vaidya, Chris Clifton and Michael
Zhu; ISBN-10: 0-387- 25886-8

BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X

IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET
SECURITY:Enabled Information Small-Medium Enterprises (TEISMES) by Charles A.
Shoniregun; ISBN-10: 0-387-24343-7

SECURITY IN E-LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0

IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0

Additional information about this series can be obtained from
http://www.springer.com

Malware Detection

edited by

Mihai Christodorescu

Somesh Jha
University of Wisconsin, USA

Douglas Maughan
Department of Homeland Security, USA

Dawn Song
Carnegie Mellon University, USA

Cliff Wang
Army Research Office, USA

@ Springer

Mihai Christodorescu Somesh Jha
Computer Sciences Department Computer Sciences Department

University of Wisconsin University of Wisconsin
1210 W Dayton St 1210 W Dayton St
Madison, WI 53706-1685 Madison, WI 53706-1685
mihai @cs.wisc.edu jha@cs.wisc.edu

Douglas Maughan Dawn Song

Dept. of Homeland Security CIC 2122

Washington, D.C. 20528 Carnegie Mellon University
Douglas.Maughan @dhs.gov 4720 Forbes Ave

Pittsburgh, PA 15213
dawnsong @cmu.edu

Cliff Wang

Computing and Information Science Div.
U.S. Army Research Office

P.O. Box 12211

Research Triangle Park, NC 27709-2211
cliff. wang @us.army.mil

Library of Congress Control Number: 2006933728

Malware Detection edited by Mihai Christodorescu, Somesh Jha, Douglas Maughan,
Dawn Song, and Cliff Wang

ISBN-10: 0-387-32720-7
ISBN-13: 978-0-387-32720-4
¢-ISBN-10: 0-387-44599-4
e-ISBN-13: 978-0-387-44599-1

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LI.C.

All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.
987654321

springer.com

Preface

Malicious programs present an increasing threat to the privacy of sensitive data and
the availability of critical services. As Internet connectivity exploded and online ser-
vices have become omnipresent, malware has targeted all aspects of the cyberworld.
Driven by profit, malware authors have sharpened their skills to attack all online
services, from banking to social networking to instant messaging, with increased
frequency and sophistication. }

This book captures recent advances in the defense against all types of threats,
and the chapters reflect a diversity of defensive techniques. Chapter 1 presents a
detailed view of the threat landscape and analyzes the malware trends. The remaining
chapters are organized into themes corresponding to the various malware threats.

Chapters 2-5 present techniques for analyzing existing programs to determine
their trustworthiness, as well as techniques for armoring programs against remote at-
tacks. Chapter 2 introduces robust approaches to the disassembly and static analysis
of obfuscated binaries, including obfuscated malware, while Chapter 3 describes a
static analysis to recover high-level variables and data structures from binaries. Tech-
niques that characterize the behavioral and structural properties of binary code are
used to generate semantically-rich descriptions of malware in Chapter 4. New ap-
proaches for the detection and prevention of SQL injection attacks against database-
driven web applications are presented in Chapter 5.

The second part of the book (chapters 6-9) tackles the problem of distributed
threats and the challenge of distributed detection. Network containment of worms
(Chapter 6) complements the host-based self-healing architecture of Sting (Chap-
ter 7) to provide end-to-end defenses against fast Internet-scale worm attacks. Chap-
ter 8 presents the inner workings of botnets, the large networks of infected hosts
under the control of a remote attacker. Chapter 9 analyzes the benefits of cooperation
between network-based and host-based intrusion detectors and provides practical
guidelines for obtaining the maximum detection rate out of a cooperative setup.

Targeted and stealthy threats meet their match in Chapters 10 and 11. Shadow
honeypots in Chapter 10 combine the power of anomaly detectors with the preci-
sion of honeypots to detect targeted attacks. Statistical methods for binary content
analysis are then used in Chapter 11 to detect malware hiding in document files.

VI Preface

The last part of the book presents new techniques for constructing trustworthy
services and applications from the ground up. Pioneer in Chapter 12 can verify the
correct execution of a program on an untrusted remote host. Chapter 13 explains
the principles of secure information flow analysis, with the goal of proving that a
program does not leak sensitive information.

We are grateful to the authors appearing in this edited volume for their contribu-
tions to the field of malware detection, in all of its aspects, and for striving to make
the Internet a safer, more trustworthy place.

Mihai Christodorescu
Somesh Jha

Douglas Maughan
Dawn Song

Cliff Wang

Contents

Part I Overview

1 Malware Evolution: A Snapshot of Threats and Countermeasures in
2005
Brian Witten, Carey Nachenbergcoi i,

Part II Software Analysis and Assurance

2 Static Disassembly and Code Analysis
Giovanni VIGna e s

3 A Next-Generation Platform for Analyzing Executables
Thomas Reps, Gogul Balakrishnan, Junghee Lim, Tim Teitelbaum

4 Behavioral and Structural Properties of Malicious Code
Christopher Kruegel i

5 Detection and Prevention of SQL Injection Attacks
William G.J. Halfond, Alessandro Orsoc.coiuuiuiuniiinina.

Part III Distributed Threat Detection and Defense

6 Very Fast Containment of Scanning Worms, Revisited
Nicholas Weaver, Stuart Staniford, Vern Paxson

7 Sting: An End-to-End Self-Healing System for Defending against
Internet Worms
David Brumley, James Newsome, Dawn Song,

8 An Inside Look at Botnets
Paul Barford, Vinod Yegneswaran c.oiiiiiiiiiiiiiiiin.

VIII Contents

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate
Fallacy?
Mihai Christodorescu, Shai Rubin 193

Part IV Stealthy and Targeted Threat Detection and Defense

10 Composite Hybrid Techniques For Defending Against Targeted
Attacks
Stelios Sidiroglou, Angelos D. Keromytis, 213

11 Towards Stealthy Malware Detection
Salvatore J. Stolfo, Ke Wang, Wei-Jen Li 231

Part V Novel Techniques for Constructing Trustworthy Services

12 Pioneer: Verifying Code Integrity and Enforcing Untampered Code
Execution on Legacy Systems

Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, Pradeep

Khosla e e e e 253

13 Principles of Secure Information Flow Analysis
Geoffrey Smith e 291

Introduction

Shared resources, such as the Internet, have created a highly interconnected cyber-
infrastructure. Critical infrastructures in domains such as medical, power, telecom-
munications, and finance are highly dependent on information systems. These two
factors have exposed our critical infrastructures to malicious attacks and accidental
failures. Disruption of services caused by such undesirable events can have catas-
trophic effects, including loss of human life, disruption of essential services, and
huge financial losses. For example, the outbreak of the CodeRed virus infected more
than 359, 000 hosts, resulting in financial losses of approximately 2.6 billion dol-
lars [10]. Given the devastating effect malicious code can have on our cyber infras-
tructure, identifying and containing malicious programs is an important goal.

A malware is a program that has malicious intent. Examples of malware are
viruses, trojans, and worms. Malware is usually classified [9] according to its propa-
gation method and goal into the following categories:

e viruses are programs that self-replicate within a host by attaching themselves to
programs and/or documents that become carriers of the malicious code;
worms self-replicate across a network;
trojan horses masquerade as useful programs, but contain malicious code to at-
tack the system or leak data;

e back doors open the system to external entities by subverting the local security
policies to allow remote access and control over a network;

e spyware is a useful software package that also transmits private user data to an
external entity.

A malware detector is a system that attempts to identify malware. A virus scanner
uses signatures and other heuristics to identify malware, and thus is an example of
a malware detector. Given the havoc that can be caused by malware [4], malware
detection is an important goal.

The goal of an malware writer (hacker) is to modify or morph their malware to
evade detection by a malware detector. A common technique used by malware writ-
ers for evading detection is program obfuscation [11]. Polymorphism and metamor-
phism are two common obfuscation techniques used by malware writers. In order

X Introduction

to evade detection, a virus morphs itself by encrypting its malicious payload and
decrypting it during execution. A polymorphic virus obfuscates its decryption loop
using several transformations, such as nop-insertion, code transposition (changing
the order of instructions and placing jump instructions to maintain the original se-
mantics), and register reassignment (permuting the register allocation). Metamorphic
viruses attempt to evade detection by obfuscating the entire virus. When they repli-
cate, these viruses change their code in a variety of ways, such as code transposition,
substitution of equivalent instruction sequences, change of conditional jumps, and
register reassignment [8, 12, 13].

Addition of new behaviors to existing malware is another favorite technique
used by malware writers. For example, the Sobig.A through Sobig.F worm variants
(widespread during the summer of 2003) were developed iteratively, with each suc-
cessive iteration adding or changing small features [S, 6, 7]. Each new variant man-
ages to evade detection either through the use of obfuscations or through adding more
behavior. The recent recurrence of the Netsky and Beagle worms (both active in the
first half of 2004) are also examples of how adding new code or changing existing
code creates new undetectable and more malicious variants [2, 3]. For example, the
Beagle worm shows a series of “upgrades” from version A to version C that include
the addition of a backdoor, code to disable local security mechanisms, and function-
ality to better hide the worm within existing processes. A quote from [3] summarizes
the challenges worm families pose to malware detectors:

Arguably the most striking aspect of Beagle is the dedication of the au-
thor or authors to refining the code. New pieces are tested, perfected, and
then deployed with great forethought as to how to evade antivirus scanners
and how to defeat network edge protection devices.

Commercial malware detectors (such as virus scanners) use a simple pattern
matching approach to malware detection, i.e., a program is declared as malware if it
contains a sequence of instructions that is matched by a regular expression. A recent
study demonstrated that such malware detectors can be easily defeated using simple
program obfuscations [1], which are already being used by hackers. The basic defi-
ciency in the “pattern matching” approach to malware detection is that they ignore
the semantics of instructions. Since the pattern-matching algorithm is not very re-
silient to slight variations, these malware detectors have to use different patterns for
detecting two malware that are slight variations of each other. This is the reason that
the signature database of a commercial virus scanner has to be updated frequently.
The paper by Christodorescu and Jha [1] demonstrates that in the field of malware
detection a fundamental shift in direction is required. If malware detectors keep re-
lying on simple techniques (such as pattern matching), they are bound to fall behind
in the “arms race”.

In order to address these challenges in malware detection, a workshop on Mal-
ware Detection was held on August 10-11, 2005 at SRI International, Arlington,

Introduction X1

Virginia.! The workshop was co-sponsored by the Army Research Office (ARO) and
Department of Homeland Security (DHS). Several experts in the field of malware
detection attended the workshop. Presentations covered various topics, such static
analysis, distributed threat detection, and novel techniques for building trustworthy
services. The papers in this edited volume represent the cutting edge techniques in
detection malware.

References

1. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the ACM

10.

11.

12.

13.

1

SIGSOFT International Symposium on Software Testing and Analysis 2004 (ISSTA’04),
pages 34-44, Boston, MA, USA, July 2004. ACM Press.

. M. Ciubotariu. Netsky: a conflict starter? Virus Bulletin, pages 4-8, May 2004.
. J. Gordon. Lessons from virus developers: The Beagle worm history through april 24,

2004. In SecurityFocus Guest Feature Forum. SecurityFocus, May 2004. Published on-
lineathttp://www.securityfocus.com/guest/24228. Last accessed: 9 Sep.
2004.

. L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. 2004 CSI/FBI computer

crime and security survey. Technical report, Computer Security Institute, 2004,

. LURHQ Threat Intelligence Group. Sobig.a and the spam you received today. Techni-

cal report, LURHQ, 2003. Published online at http://www.lurhqg.com/sobig.
html. Last accessed on 16 Jan. 2004.

. LURHQ Threat Intelligence Group. Sobig.e - Evolution of the worm. Technical report,

LURHQ, 2003. Published online at http://www.lurhqg.com/sobig~e.html.
Last accessed on 16 Jan. 2004,

. LURHQ Threat Intelligence Group. Sobig.f examined. Technical report, LURHQ, 2003.

Published online at http://www.lurhg.com/sobig-f.html. Last accessed on
16 Jan. 2004.

. A. Marinescu. Russian doll. Virus Bulletin, pages 7-9, Aug. 2003.
. G. McGraw and G. Morrisett. Attacking malicious code: report to the Infosec research

council. I[EEE Software, 17(5):33 — 41, Sept./Oct. 2000.

D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread and victims of
an internet worm. In Proceedings ot the Internet Measurement Workshop 2002, Marseille,
France, November 6-8 2002.

C. Nachenberg. Computer virus-antivirus coevolution. Commun. ACM, 40(1):46-51, Jan.
1997.

P. Szor and P. Ferrie. Hunting for metamorphic. In Proceedings of the 2001 Virus Bulletin
Conference (VB2001), pages 123 — 144, September 2001.

z0mbie. zOmbie’s homepage. Published online at http://z0mbie.host.sk. Last
accessed: 16 Jan. 2004.

Details about the workshop can be found at

http://www.cs.wisc.edu/malwareworkshop2005/.

Part 1

Overview

1

Malware Evolution: A Snapshot of Threats and
Countermeasures in 2005

Brian Witten and Carey Nachenberg

! Symantec Corporation, 12801 Worldgate Drive, Suite 800, Herndon, VA
20170

bwitten@symantec.com

z Symantec Corporation, 2500 Broadway, Suite 200, Santa Monica, CA
90404

cnachenberg@symantec.com

1.1 Overview

Speed, stealth, and purpose of malware [1] threats and countermeasures are
evolving quickly. This chapter describes these three facets of current mal-
ware threats, and describes a few countermeasures emerging to better ad-
dress such threats.

1.2 Evolution of Threats

Defenders currently have a much smaller window from discovery of a
vulnerability to release of malware exploiting that vulnerability. Further, a
number of malware threats released within the last five years have been
effectively designed to propagate far faster than threats released in previous
periods. Yet more disconcerting, malware authors and distributors are in-
creasingly focused on collection of private and directly valuable informa-
tion, both in spyware [2] and other forms of malware, and they have a
growing number of techniques for hiding themselves.

4 Brian Witten and Carey Nachenberg

1.2.1 Evolution of Threat Speed

The average time between announcement of a computer system security
flaw and appearance of malicious code that takes advantage of the flaw
declined from 281 days in 1999 to 10 days in 2004 [15]. Recent threats are
also faster in propagation rate. By way of example, on January 25, 2003 an
SQL based worm commonly referred to as Slammer [18] infected 90% of
vulnerable servers within the first 10 minutes of propagation [37]. Similarly,
on July 19, 2001 in less than 14 hours more than 359,000 computers were
infected with a variant of the Code-Red worm [32]. In contrast, the Morris
Worm of 1988 [6] spread over the course of days [26]. Given that the cur-
rent average time between the disclosure of a vulnerability and the release of
an associated exploit is 6 days, and that the average patch-release time is 54
days [44], patching is largely ineffective against new threats.

1.2.2 Evolution of Threat Purpose

Malicious code for profit remains on the rise [44], as are spyware and other
threats to confidential information. Between January 1 and June 30, 2005,
malicious code that exposed confidential information represented 74% of
the top 50 malicious code samples reported to Symantec, up from 54%
during the previous six months [44], and 44% between January 1 and June
30, 2004 [43]. Spyware is now among the most pervasive and fastest
growing forms of malware. In a recent study by NCSA and AOL, 80% of
systems scanned were infected by spyware [12]. Even by conservative
standards of cataloging spyware, Symantec now lists 221 families of spy-
ware that have appeared in and since 2003 [7]. To contrast the spyware
threat with viruses and worms, although thousands of variants of viruses and
worms are found each quarter, only 830 families of viruses and worms were
discovered between January 1, 2003 and June 30, 2005 [44]. In short, al-
though anti-spyware offerings did not appear until 2000 [8], the rate at
which new families of spyware are being created is now nearing the rate at
which new viruses are being created. Moreover, by laying in waiting at well
advertised sites and bundling itself with desirable downloads such as
Browser Helper Objects, and other software that users intentionally or un-
intentionally download, it’s easier to broadcast some forms spyware to very
broad distributions of victims immediately, rather than waiting through the
first portion of s-shaped infection growth curves experienced by viruses and
worms. Given these propagation vectors and threat speeds described above,
along with the number of unprotected systems and systems that update their
defenses infrequently, malware authors have succeeded in compromising

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 5

countless systems. In fact, police recently arrested three people accused of
compromising 100,000 systems [21]. Moreover, given the changing mo-
tives described above, it is very common to establish a persistent presence
called a “bot” on such compromised machines for financial gain. Once such
a bot is installed, its owner can steal confidential information, use the ma-
chine for spam distribution, falsely increasing hit rates on advertisements to
increase hit rate-based ad revenue, or simply sell the bot to others for such
illicit uses. We recently reported evidence of underground selling of bot
networks and reported identifying an average of over 10,000 bots per day
over a six month period [44].

1.2.3 Evolution of Threat Stealth

Such financial motives give direct financial value to the ability to hide a
persistent presence to prevent detection. Rootkits [9] are among the tools
which malware may use to persistently hide itself as well as installed bots.
This is a growing area of interest for malware authors, and several tech-
niques have recently been published showing how to more effectively hide
persistent malware from detection by security software [10, 41]. Further, as
the number of variants of viruses and worms continues to nearly double
every six months [44], the risk of previously unseen malware evading de-
tection continues to increase substantially each quarter. Moreover, as the
number of vulnerabilities continues to grow so does the risk that someone
might quietly and non-publicly find a new, unpublished vulnerability and
create malware exploiting the vulnerability on large scale before most de-
fenders are able to find and mitigate the vulnerability. Last, as defenses and
detection schemes have evolved to better protect operating systems and
standard services, many malware authors have focused their attention on
higher level web applications where fewer defenses have existed histori-
cally, resulting in a countless number of incidents with sweeping loss of
privacy [31, 45].

1.3 Evolution of Countermeasures

This section describes a sampling of recently emerging countermeasures for
fast spreading and previously unseen threats, as well as spyware. Since
emergence of fast spreading threats such as Slammer and Code Red, tech-
niques and technologies have emerged to better mitigate risks from such fast
spreading threats. Various forms of rate-limiting, such as Virus Throt-
tling [50], were among early countermeasures proposed to slow such rapid

6 Brian Witten and Carey Nachenberg

and potentially entirely-unknown threats. Other countermeasures, however,
don’t merely slow the threat but rather completely block previously unseen
threats from actually infecting protected machines. Given the strong indus-
try emphasis on signature-based detection for intrusion detection and
anti-virus, malware authors and distributors have found great value in lev-
eraging previously unseen threats to evade detection. For this reason, pro-
active approaches will grow to be an increasingly important tool in the se-
curity arsenal. However, broadening and generalizing protection against
many classes of previously unseen threats is not sufficient for all threats.
More and more spyware threats are employing self-updating to add func-
tionality and change their signature faster than security vendors can respond
with traditional techniques; moreover, they have distribution vectors that
are vastly different from traditional malware, Thus, security firms are hav-
ing to devote substantial effort addressing these unique behaviors, including
building farms of spyware to rapidly harvest new spyware variants as they
update themselves. Further, when threats such as rootkits, which are be-
coming increasingly stealthy in establishing and maintaining covert and
persistent presence, are coupled with either a previously unseen threat or the
exceptionally broad distribution vectors of spyware, the result is a blended
threat that is exceedingly difficult to detect at time of compromise, and can
be exceedingly difficult to detect and remove after compromise. For these
reasons, the next sections focus on countermeasures for previously unseen
malware threats in general, then specific attention to countermeasures for
rootkits and spyware.

1.3.1 Countermeasures for Previously Unseen Threats

Countermeasures for previously unseen threats are addressed below first for
detecting previously unseen threats against already known vulnerabilities
and identifying previously unknown vulnerabilities, and then for detecting
previously unseen threats without foreknowledge of the vulnerability.

Blocking Previously Unseen Threats Against Already Known Vulnerabilities

Techniques such as Generic Exploit Blocking (GEB) [33] and Microsoft’s
Shield effort [47] were conceived to provide protection against previously
unseen threats. These techniques use analysis of a known vulnerability to
produce a signature that is not specific to any single instance of malware
exploiting the vulnerability. Thus, such a properly written signature can
properly detect all potential attacks against a given vulnerability. This is in
contrast with traditional antivirus and IDS heuristics which may be able to

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 7

detect a percentage of new threats, but cannot guarantee complete detection.
However, these approaches include a number of challenges in implementa-
tion, including the following three challenges.

- First, the signatures must be specified in a language and processed by a
scanning engine that facilitate “performant” scanning, either in the
sense of high line-speeds, as is the constraint for traditional intrusion
detection and network level anti-virus systems, or in the sense of low
CPU burden.

- Second, the system must maintain low false positives while producing
high true positives.

- Third, even though these approaches do not require prior knowledge of
the malware, they still require prior knowledge of the vulnerability.
The luxury of that prior knowledge is not always available.

The next two sections describe techniques for identifying previously

unknown vulnerabilities, and techniques for detecting previously unseen
threats without the luxury of knowledge of the vulnerability.

Identifying Previously Unknown Vulnerabilities

Given that the above techniques rely on prior knowledge of vulnerabilities,
they would be substantially more valuable if it was possible to better iden-
tify vulnerabilities in software before malware was created to exploit those
vulnerabilities. A form of random test case generation known as Fuzzing [5]
is among the most common techniques for finding vulnerabilities. More
recently, static analysis of the target software itself has been used to intel-
ligently generate test cases more efficiently identifying vulnerabilities likely
to exist near corner cases in target software execution [16, 23]. Although
these techniques currently require source code, substantial progress has
been made in extracting models from executable code for model checking
and other static analysis without source code [13, 14]. However, in dis-
cussing static analysis of binaries, it is important to note that such tools can
be used very effectively by creators of malware just as easily as they can be
used by the security community [30].

Identifying Previously Unseen Threats without Prior Knowledge of
Vulnerabilities

In this section we describe several emerging techniques that do not require
prior knowledge of vulnerabilities for identifying previously unseen threats.
These techniques include behavior based techniques, honeypots, anomaly
detection, fault analysis, and correlation. Dynamic analysis of program
behavior within a host is not new [11]. Behavior analysis was extended with

8 Brian Witten and Carey Nachenberg

various forms of anomaly detection [25] to improve generalization to pre-
viously unseen attacks while reducing false positives. However, some of
these techniques are vulnerable to evasion [30]. More recent techniques
include:

Model Extraction:
- Machine learning of packet payload statistical profiles to model nor-
mality for anomaly correlation
- Machine learning of state models of run-time behavior to detect
run-time deviation from model
- Using static analysis to extract models for run-time monitors that de-
tect deviation from model

Automated Signature Inference, extracting signatures:

- From static samples in controlled environments

- From taint analysis of fault inducing inputs in production systems

- From correlation of fault inducing inputs in production systems

- From analysis of fault inducing inputs in honeypots shadowing pro-
duction systems

- Via correlation for longest common byte sequences in honeypot traffic
and other inputs given above

- Via correlation for trees of token subsequences to reduce false posi-
tives

Model Extraction

Having a model of how a system should behave can be helpful in detecting
new threats that cause misbehavior. Even if there is no prior knowledge of
the threat, such models make detection of the misbehavior possible, therein
facilitating potential remedies.

One approach for modeling how a system should behave involves
learning the statistical composition of traffic coming and going from a
system. With such statistical models, anomalies are detectable, and it may
even be possible to correlate commonality between anomalies occurring at a
distributed set of sites [48].

For stateful systems, including many software applications that query
database systems, it is possible to build more precise models of normal
behavior by modeling the behavior in terms of state machines. This works
best when a full set of normal queries can be learned quickly so that after
such a learning period, the system can alert on any anomalies in different
fields of queries via statistical approaches without intolerable false posi-

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 9

tives. Recent progress demonstrated this possible for at least one web based
database application [46].

However, not all anomalies are misbehaviors. Since some rare and
anomalous behaviors are legitimate behaviors, there are advantages in ap-
plying static analysis to the software to build a model of how the software
should behave, and detecting deviations from such models [24].

Automated Signature Inference

Once a new, previously unseen threat is detected, extracting a signature of
that threat and disseminating that signature to others may help others better
protect themselves. Of course, automated signature extraction is not new in
controlled environments [27], and there has been tremendous progress re-
cently in automated signature extraction in the “wild” of less controlled
environments such as production systems, honeypots, and other threat col-
lection systems.

One technique for automatically extracting signatures from production
systems leverages analysis of fault inducing inputs. By using tainting, it is
possible to trace backwards from a fault to the fault inducing input [35].

Similarly, without runtime tracing, it is possible to capture the set of in-
puts preceding a fault or disallowed state, and send those inputs to other
parties for correlation with other inputs preceding and not preceding
faults [19].

Moreover, a third approach to fault handling leverages parallel execution
of inputs on production systems and more controlled systems to provide the
ability to not only detect previously unseen threats, but to dynamically
generate and dynamically apply curative patches and allow the system to
continue operation despite receipt of what would have been fault inducing
input [38, 39]. In this model, the more controlled system, is a honeypot
shadowing the production system. The honeypot executes the inputs first,
and if a fault occurs, an overarching control system attempts to mutate the
executable around the region of the fault to produce a variant of the ex-
ecutable that does not fault on the input. Once such a curative patch is
generated and applied to the production system, the production system is
allowed to process the input which caused the fault in the controlled system
but does not cause faults in the dynamically patched system.

Automated signature extraction has also been developed for less con-
trolled honeypot environments to function without requiring either faults as
triggers or production systems to shadow. One version of this approach
works by using longest common sequences in message exchanges [28].

Such techniques have been improved in systems such as Polygraph by
using trees of token sequences to reduce false positives [34]. Moreover,

10 Brian Witten and Carey Nachenberg

such techniques have been further improved in a similar system, Earlybird,
to support processing traffic at speeds up to 200 Mbps [40]. More recently, a
similar system, “DACODA” demonstrated detection of more than a dozen
worms, with no prior knowledge of the worms and no false positives over a
six month period [20]. Maintaining negligible false positives is critical since
preventing threats so rapidly propagating as Warhol Worms [42] requires
both rapid signature inference and rapid blocking, and system owners and
operators have little tolerance for blockage of legitimate traffic. Regrettably
though, DACODA does not have the line speed scalability of Earlybird.

1.3.2 Countermeasures for Rootkit Detection

As described in the “Evolution of Threats,” above, malware authors and
distributors currently have many vectors for establishing access to a system,
and direct financial motives for establishing and maintaining undetected
persistent presence on compromised systems, effectively hiding themselves
indefinitely. Recently, some techniques have begun to emerge for detecting
the stealth threats by searching for side effects of the stealthing mechanism
(e.g. changes made to various operating system structures, checking for
unusual hooks in the operating system kernel, etc.). One technique uses
static analysis of the operating system to identify critical regions of memory
and valid values for those regions, and provides those results to a run time
kernel integrity monitor [22, 36]. Another technique uses static analysis to
construct a model of a module’s programmed behavior to determine at load
time whether or not the module will behave like a rootkit at runtime [29].
Though not mentioned by the authors, similar techniques may also have
utility in detection and classification of spyware. '

1.3.3 Countermeasures for Spyware

However, spyware also requires technologies orthogonal to load time
analysis, categorization, and run time rootkit detection. Perhaps most im-
portantly, the rate of spyware evolution, the rate of spyware distribution,
and the means of spyware distribution broadcast from thousands to millions
of websites to countless unsuspecting users, practically all require the se-
curity industry to more actively seek out these threats on the internet. Such
techniques have been proposed and implemented by Microsoft [49], We-
bRoot [3], and others. Moreover, spyware defenses are now in or entering
the market as either standalone offerings, or as offerings integrated with
anti-virus and other product offerings.

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 11

1.4 Summary

The speed, stealth, and purpose of malware are evolving rapidly. Over re-
cent years, substantial technology has emerged to help mitigate risks of fast
spreading threats, and a variety of technologies have emerged to begin to
help mitigate risks from previously unseen threats. However, malware is
becoming both increasingly stealthy, and increasingly malicious in the
sense of collection of private and directly valuable personal information.
Gone are the relatively innocent glory days where fame and infamy were
primary motivators behind construction of most malware seen. We’ve now
entered the era where malicious collection of private and directly valuable
personal information from unsuspecting users is a billion dollar [4] illicit
industry.

References

1. http://en.wikipedia.org/wiki/Malware

2. http://en.wikipedia.org/wiki/Malware#Spyware

3. http://www.webroot.com/resources/phileas/

4. http://www.gartner.com/DisplayDocument?doc_cd=120804

5. fip://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

6. http://en.wikipedia.org/wiki/Morris_worm

7. http://securityresponse.symantec.com/avcenter/expanded_threats/spyw

are/index.html

8. http://en.wikipedia.org/wiki/Spyware

9. http://en.wikipedia.org/wiki/Rootkit

10. http://cme.mitre.org/data/list.html#589

11. http://en.wikipedia.org/wiki/Host-based_intrusion_detection_system

12. AOL/NCSA Online Safety Study, Conducted by America Online and
the National Cyber Security Alliance, October 2004,
http://www.staysafeonline.info/pdf/safety study v04.pdf

13. G. Balakrishnan, et. al, “Model checking x86 executables with Code-
Surfer/x86 and WPDS++,” (tool-demonstration paper). In Proc. Com-
puter-Aided Verification, 2005.
http://www.cs.wisc.edu/wpis/papers/CAV05-tool-demo.pdf

14. G. Balakrishnan, et. al, “WYSINWYX: What You See Is Not What You
eXecute.” To appear in Proc. IFIP Working Conference on Verified
Software: Theories, Tools, Experiments, Zurich, Switzerland, Oct.
10-13, 2005. http://www.cs.wisc.edu/wpis/papers/wysinwyx05.pdf

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Brian Witten and Carey Nachenberg

D. Bank, “Computer Worm Is Turning Faster,” The Wall Street Journal,
May 27, 2004.

C. Cadar and D. Engler, “Execution Generated Test Cases: How to
Make Systems Code Crash Ttself,” CSTR-2005-04,
http://www stanford.edu/~engler/cstr-3.25.5.pdf

CAN-2003-0533

CERT® Advisory CA-2003-04 MS-SQL Server Worm;
http://www.cert.org/advisories/CA-2003-04.html

M. Costa, et. al, “Vigilante: End-to-End Containment of Internet
Worms,” ACM SIGOPS Operating Systems Review, Volume 39, Issue
5 (December 2005),
http://research.microsoft.com/~manuelc/MS/VigilanteSOSP.pdf

J. Crandall, et. al,